
Lebesque’s Dominated Convergence Theorem (Theorem 2.4.2) 

 

Suppose the function  ,h x y  is continuous at 0y  for each x , and there 

exists a function  g x  satisfying: 

i)    ,h x y g x  for all x and y 
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Uniform convergence and integration. 

Assume  nf f uniformly on [a,b] and that the Riemann integral 

of nf  exist for n=1, 2, …  . Then the Riemann integral of f exists and  
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Uniform convergence and derivation 

Assume  for  nf  that  'nf  is continuous in [a,b]. Assume there 

exists at  0 ,x a b  such that   n of x  converges and that  'nf
converges uniformly in [a,b]. Then  nf  converges uniformly towards 

a function f  and in [a,b] and  
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Theorem 2.4.8 

Suppose that the series  
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Overview of some natural occurring distributions 

 

 

Independent trials 

Register: cA/A  

 P A p  

Events in disjoint timeintervals are 
independent 

   One event in t t tP o      

   More than one event in t tP o    

X=number of times A occurs in n trials 
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X=number of times A occur in [0,t] 
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X=number of trials until A occurs for the first 
time 

   
1

1 ,  x 1,2,
x

P X x p p


     

X= time until A occurs for the first time 
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X=number of trials until A occurs for the r-th 
time 

   
1

1 ,  x , 1,
1

x rr
x

P X x p p r r
r

 
     

 
 

X=time until A occurs the r-th time 
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