Lebesque's Dominated Convergence Theorem (Theorem 2.4.2)

Suppose the function h(x, y) is continuous at y_0 for each x, and there exists a function g(x) satisfying:

i)
$$|h(x, y)| \le g(x)$$
 for all x and y
ii) $\int_{-\infty}^{\infty} g(x) dx < \infty$
Then $\lim_{y \to y_0} \int_{-\infty}^{\infty} h(x, y) dx = \int_{-\infty}^{\infty} \lim_{y \to y_0} h(x, y) dx$

Uniform convergence and integration.

Assume $\{f_n\} \rightarrow f$ uniformly on [a,b] and that the Riemann integral of f_n exist for n=1, 2, ... Then the Riemann integral of f exists and

$$\int_{a}^{x} f_{n}(t) dt \rightarrow \int_{a}^{x} f(t) dt \text{ uniformly on [a,b]}.$$

Uniform convergence and derivation

Assume for $\{f_n\}$ that $\{f_n'\}$ is continuous in [a,b]. Assume there exists at $x_0 \in [a,b]$ such that $\{f_n(x_o)\}$ converges and that $\{f_n'\}$ converges uniformly in [a,b]. Then $\{f_n\}$ converges uniformly towards a function f and in [a,b] and

$$\frac{d}{dx}\left(\lim_{n\to\infty}f_n(x)\right) = f'(x) = \lim_{n\to\infty}f'_n(x)$$

Theorem 2.4.8

Suppose that the series
$$\sum_{x=0}^{\infty} h(x, \theta)$$
 converges for all $\theta \in (a, b)$ and

i)
$$\frac{d}{d\theta}h(x,\theta)$$
 is continuous in θ for each x

ii)
$$\sum_{x=0}^{\infty} \frac{d}{d\theta} h(x,\theta)$$
 converges uniformly on every closed bounded

interval subinterval of ig(a,big)

Then
$$\frac{d}{d\theta} \sum_{x=0}^{\infty} h(x,\theta) = \sum_{x=0}^{\infty} \frac{d}{d\theta} h(x,\theta)$$

Overview of some natural occurring distributions

Independent trials	Events in disjoint timeintervals are
Register: A/A ^c	independent
P(A) = p	$P(\text{One event in } \Delta t) = \lambda \Delta t + o(\Delta t)$
	$P(\text{More than one event in } \Delta t) = o(\Delta t)$
X=number of times A occurs in n trials	X=number of times A occur in [0,t]
$P(X = x) = {\binom{n}{x}} p^{x} (1-p)^{n-x}, x = 0, 1,, n$	$P(X = x) = \frac{(\lambda t)^{x} e^{-\lambda t}}{x!}, x = 0, 1, 2, \dots$
X=number of trials until A occurs for the first	X= time until A occurs for the first time
time	$\lambda e^{-\lambda x}, x > 0$
$P(X = x) = (1-p)^{x-1} p, x = 1, 2,$	$f_{X}(x) = \begin{cases} \lambda e^{-\lambda x}, \ x > 0\\ 0, \ \text{otherwise} \end{cases}$
X=number of trials until A occurs for the r-th	X=time until A occurs the r-th time
time $P(X = x) = {\binom{x-1}{r-1}} p^r (1-p)^{x-r}, \ x = r, r+1,$	$f_{X}(x) = \begin{cases} \frac{\lambda^{r}}{\Gamma(r)} x^{r-1} e^{-\lambda x}, x > 0 \end{cases}$
(r-1)	0, otherwise